
Floating-Point Modules Targeted for Use with RC 
Compilation Tools 

Clay S. Gloster, Jr.,  Ph.D.,  P.E. 
Department of Electrical Engineering 

Howard University 
Washington, DC 20059 
Phone: (202) 806 6628 

cgloster@ howard.edu 

Ibrahim Sahin 
Department of Electrical and Computer Engineering 

North Carolina State University 
Raleigh, NC 27695-7914 
 Phone: (919) 513 2014 

isahin@eos.ncsu.edu

ABSTRACT 

Reconfigurable Computing (RC) has emerged as a viable 
computing solution for computationally intensive applications. 
Several applications have been mapped to RC systems and in 
most cases, they provided the smallest published execution time. 
Although RC systems offer significant performance advantages 
over general-purpose processors, they require more application 
development time than general-purpose processors. This increased 
development time of RC systems provides the motivation to 
develop an optimized module library with an assembly language 
instruction format interface for use by future RC system 
compilers. Hence, RC system compilation tools for C++/Java 
language programs can utilize these modules providing the 
required infrastructure for an automated RC development system 
that will reduce development time significantly. In this paper, we 
present area/performance metrics for 9 different types of floating 
point (FP) modules that can be utilized to develop complex FP 
applications. These modules are highly pipelined and optimized 
for both speed and area. Using these modules, an example 
application, FP matrix multiplication, is also presented. Our 
results and experiences show that with these modules, 8-10X 
speedup over general-purpose processors can be achieved. 

Keywords: Adaptive Computing, Reconfigurable Computing, 
Reconfigurable Systems. 

1. INTRODUCTION 
Adaptive computing, also known as reconfigurable computing 
(RC), is a combination of hardware/software data processing 
platforms that include a general-purpose processor and one or 
more FPGA devices. These RC systems combine the flexibility of 
general-purpose processors with the speed of application specific 
processors [1], [2]. In a typical reconfigurable computer, 
computationally intensive portions of algorithms are executed on 
FPGA devices for enhanced performance. A well-designed and 
utilized adaptive computer could yield 10X to 100X improvement 
in execution time over conventional general-purpose processor 
based "software only" computers. 

Several applications have been mapped to reconfigurable 
computers to demonstrate the viability of RC systems. 
Applications mapped to these systems include image processing 
algorithms [3], [4], genetic optimization algorithms [5], and 

pattern recognition [6]. In most cases, the reconfigurable 
computing system provided the smallest published execution time 
for these applications.  

Although RC systems offer significant performance advantages 
over general-purpose processors, they have a few disadvantages. 
RC systems require more application development time than 
general purpose processors, but significantly less than developing 
an application specific integrated circuit. Also, RC system 
designers need to be knowledgeable in the areas of hardware and 
software system design. Additionally, due to the limited resources 
available in previous RC systems, applications that required 
floating-point (FP) operations were either, not mapped to RC 
systems, or converted to fixed point before developing the RC 
implementation [7].  

In a recent study, we implemented several FP modules in VHDL 
to perform IEEE floating-point operations [8] including addition, 
subtraction and multiplication, and mapped them to a XC4044XL 
FPGA device [9] to create a FP module library. While 
implementing the FP modules, our goal was to maximize the 
speed, minimize the hardware resources required, and reduce both 
the module and the application design and implementation time.  

Each module is designed to execute a specific machine language 
instruction to process a set of FP vectors. Using the modules, RC 
compilation tools can be developed to automate the RC system 
design process. These compilation tools can potentially compile 
applications implemented in C++/Java and produce 
assembly/machine language instructions that correspond to each 
module.  

In this paper, an example application, FP matrix multiplication, is 
presented. This application utilizes several modules to 
demonstrate that larger, more complex, applications can be 
developed with these modules.  Our results and experiences 
demonstrated that with these modules, application development 
time is reduced significantly and 8-10X speedup over general-
purpose processors can be achieved. 

This paper presents implementation details and area/performance 
metrics for 9 different types of FP modules that can be utilized to 
develop complex FP applications. These modules are highly 
pipelined and optimized for both speed and area. The following 
section presents detailed information about the core units and the 
modules. Experimental results and module statistics are presented 
in Section III. Implementation of a matrix multiplier using our 
modules is presented in Section IV. The paper concludes with 
suggestions for future research. 
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2. FLOATING-POINT MODULES 
In this study, we developed several standard components to create 
different types of modules that are useful for various applications. 
These component types are floating-point core units, module 
controllers and module datapaths. These components are 
standardized in terms of the number of inputs, the number of 
outputs and module latency, in order to facilitate module 
interconnection for complex operations. By combining unique 
core units with a few controllers and datapaths, several different 
types of modules have been created. Using this approach, the time 
required to design a new module is reduced significantly. When a 
new core unit is designed, one simply combines the new core with 
an off-the-shelf controller and datapath. 
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Figure 1: Block diagram of the standard module structure. 

Figure 1 shows the block diagram of the standard floating-point 
module. Each module consists of a standard controller and a 
standard datapath that interfaces with an external memory. New 
cores are simply instantiated in a standard datapath resulting in 
new modules. 

This paper presents experimental results using three different core 
units, four different controllers and three different datapaths to 
produce a total of 9 floating-point modules. (IBRAHIM - LIST 
THE CORES HERE) The multiply-accumulate module was used 
to implement matrix multiplication on 4 FPGA devices. 

2.1 Module Machine Language and Execution 
All modules are designed to execute a specific machine language 
instructions. Each module instruction corresponds to a single 
floating-point vector operation. A standard instruction includes 
three or four operands depending on the type of module used. 
Figure 2 shows the instruction format for each module. For each 3 
operand module instruction, the first operand is the starting 
address of the input vector, the second is the starting address of 
the output vector, and the third operand is the size of the input 
vectors. 

For each four operand module instruction, the first two operands 
are the starting addresses of the two input vectors, the third 
operand is the starting address of the output vector and the last 
operand is the size of the vectors. The floating-point accumulator 
and product modules use the instruction format of Figure 2a. 
However, these modules produce an output vector with length 1. 

All modules were designed for a commercial FPGA board [10] 
that is readily available in our laboratory.  This board includes 

five FPGA devices or Processing Elements (PEs). Each PE has its 
own dual ported local memory (1M Byte). The host computer and 
the PE have read and write access to the local memory. The 
memory space of each module is partitioned into two sections, 
instruction and data. The instruction memory always starts at 
memory address $00000 and ends with the HALT instruction 
($FFFFFFFF). The remaining memory that is not used for 
instructions is used for data. 
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Start of the input vector
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Start of the output vector
Start of the input vector  

(a) 
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Start of the 2nd vector
Start of the 1st vector
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Figure 2: Modules instruction formats. (a) Module instruction 
for a single input vector module.  (b) Module instruction 
format for a two input vector module and the multiply- 
accumulate module. 

Once a module configuration has been loaded into a PE and the 
local memory has been initialized by the host computer, the 
module waits for the reset signal to be asserted. When this occurs, 
the module reads the first instruction from the memory location 
$00000. It then begins executing the instruction. When the current 
instruction has completed, the module reads the next instruction 
from the instruction memory. This process continues until the 
module reads a HALT instruction ($FFFFFFFF) from the 
instruction memory. When this value is read, the module stops 
and sends an interrupt signal to the host computer. 

The modules’ execution times can be evaluated given the number 
of cycles required to process one set of vectors. The memory unit 
we used has a two clock cycle latency for read operations and a 
one clock cycles latency for write operations. The vector addition, 
subtraction and multiplication modules write results back to the 
memory between successive read operations. Hence, the optimal 
memory access schedule for these modules is two read cycles 
followed by one write cycle producing a result every 3 cycles. We 
achieved near-optimal performance with our modules since we 
inserted only one idle state. Using this approach, an output is 
produced every 4 cycles.  

We developed Equation (1) to approximate the total execution 
time of the modules (TE).  In this equation, NF is the number of 
cycles required to fetch an instruction, NP is the number of cycles 
required to process the given vectors, NE is the number of cycles 
required to empty the pipelined core, FM is the module clock rate, 
and CAPI is the Application Programming Interface (API) 
overhead. 

+=
NF  +  NP   +  NE

(1)CAPITE FM  
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For three and four operand modules developed for vector 
addition, subtraction, and multiplication, the instruction fetch 
takes 9 and 10 cycles respectively and pipeline emptying takes 8 
cycles. Processing takes 4 cycles per pair of vector elements. The 
constant API overhead depends on the host computer’s speed. For 
large vectors, instruction fetch and pipeline emptying times for 
addition subtraction, and multiplication are negligible and 
equation (1) could be rewritten, as equation (2) where N is the 
length of the vectors. 

Since the accumulator and product modules do not write back to 
the memory until the end of the module instruction, both are able 
to read an element of the input vector from the memory every 
clock cycle. As a result, cores in the accumulator and the product 
modules are utilized 100% and run almost fours times as fast as 
the other modules. Equation (1) also applies to these modules. 
Equation (3) shows the execution time when instruction fetch and 
emptying are negligible. 
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The multpliy and accumulate module is able to read two FP vector 
elements every two (IBRAHIM – IS THIS RIGHT?) cycles. 
The core units are 50% utulized. Equation (4) could be used to 
estimate execution time for this module. 

2.2 Core Units 
The most important component of a module is the floating-point 
arithmetic core. For each floating-point operation, we developed a 
standard core unit. Each core unit is highly pipelined, has the 
same inputs and outputs, and has the same latency. By 
instantiating each unique core unit into a standard module 
structure, we created a new module for each operation.  

Figure 3 shows the block diagram of the standardized core unit. 
Each core has two 32-bit inputs and one, 32-bit output to 
accommodate single precision FP numbers. For addition, 
subtraction and multiplication, different floating-point core units 
were developed. There is a standard interface definition for the 
core units to reduce design time. Once a new core unit is 
designed, it is easy to create a new module by just instantiating 
the new core unit into the standard module structure. 

To improve the maximum clock speed that can be applied to the 
units, all core units are divided into a standard number of pipeline 
stages (8). We used a standard number of pipeline stages to 
alleviate the need to develop a unique controller within each core. 
However, the main controller can handle cores with arbitrary 
latencies. While, using pipeline units requires additional registers 
resulting in an increase in FPGA CLB resources, it provides 
significant benefit in terms of increased clock speed. 
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Figure 3 Block diagram of the standard core units. 

To reduce the hardware requirements and to make the module 
controller simpler, core units are designed as self-controlled units. 
Once data is available at both inputs, the core unit starts 
processing. Results are available at the output of the unit 8 clock 
cycles later. 

This is accomplished with a standard floating–point core I/O 
interface. Each core has two input signals and one output signal 
for control and core interconnection. Each time that the module 
controller reads a floating-point number from the memory, it 
asserts either the LEFT_READY or RIGHT_READY signal 
corresponding to the core input that has valid data. When both 
inputs to the core have valid data and both ready signals are 
asserted, the core begins the floating-point operation. When the 
core finishes processing the data, it asserts the RESULT_READY 
signal. The main controller then stores the result in memory. 

Use of the standard interface control signals serves two purposes. 
The main purpose is to reduce controller complexity and to 
increase controller flexibility. Hence, a single controller can 
handle future cores with arbitrary latencies. The controller does 
not send command signals to each stage of the core. Instead, it 
uses the interface signals to signal the core that the input data is 
ready. It also uses the RESULT_READY signal produced by the 
core to determine when the result is ready. This simplification in 
the controller saves control states, logic gates, and future 
application development time. The other purpose is to facilitate 
the addition of complex cores into the library.  The use of the 
standard interface control signals makes it is easy to form larger 
cores by simply linking existing cores together. 

2.3 Module Datapath 
Three unique datapaths have been developed for this paper. 
Figure 4 shows the block diagram of the datapath for two input 
vector addition, subtraction, and multiplication. Although the core 
unit is self-controlled, there are still many parts to control in the 
datapath. For that reason, as shown in Figure 6, the datapath was 
partitioned into two sections: the data processor and the 
fetch/decode unit. The controller generates different micro 
instructions for each section. 
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Figure 4: Block diagram of the standard datapath for two 

input vector modules. 

The data processor section of the accumulator datapath consists of 
the core unit, two 32-bit data registers, and two multiplexors. The 
registers are used for two purposes. First, they are used for 
temporary storage. Since we are only able to read one 32-bit value 
at a time from the memory, the data read from memory is stored in 
one of these registers. Secondly, since the floating-point core 
inputs are not registered, we must include registers in the 
datapath. For the accumulator and the product modules, it is 
necessary to connect the output of the core back to the input of the 
core. This connection is accomplished with M0 and M1 
multiplexors as shown in Figure 5. 
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Figure 5: Block diagram of the standard datapath for the 

accumulator and the product modules. 

The fetch and decode unit includes: four counters, one register, 
one specialized comparator, and a multiplexor. The CR and CW 
counters are loadable counters and are used for addressing input 
and output vectors.  

PC is used as a program counter to keep track of the module 
instructions. The E Counter is used for emptying the pipelined 
core units. After the last set of input data is loaded from the 
memory, the controller sets this counter equal to the number of 
cycles required to empty the pipeline. The controller waits until 
all the remaining data in the core is processed and the results are 
written back to the memory. The E counter is especially useful 
while emptying the accumulator core. The RF register is used to 
store the size of the input vectors.  

The specialized comparator produces two signals. The DONE 
signal is asserted when the module reaches the end of a given set 
of vectors. The FINAL signal is asserted when all instructions 
have been processed. 

2.4 The Module Controller 
In this paper, four unique module controllers are presented. The 
first controller assumes that elements of the input vector pair are 
interleaved or stored in consecutive memory locations as follows; 
A0, B0, A1, B1, A2, B2, ... AN, BN. It is used for one input 
vector modules. The second controller assumes that the input 
vectors are separate. The first and the second type of controllers 
were used to construct vector addition, subtraction, and 
multiplication modules. The third type of controller has been 
developed for the accumulator and the product modules and 
fourth type has been developed for multiply and accumulate 
module. The controllers for the accumulation, the product and the 
multiply and accumulate modules are much more complicated 
than the previous two due the pipeline emptying process of these 
modules. 

When a pipelined adder is used for vector accumulation the 
process can be performed in three steps. Step 1: Forward the 
numbers through the pipeline until the first number appears at the 
output of the pipeline. Step 2: Accumulate the numbers until the 
last number is read from the memory. Step 3: Empty the pipeline. 
The first and the second steps are similar to the addition and 
multiplication process. The last step requires special handling; 
therefore, a special module controller has been developed for the 
accumulator module. 

3. EXPERIMENTAL RESULTS 
3.1 Module Statistics 
Table 1 shows the resulting device utilization and maximum clock 
speed for each module. These values were collected after module 
placement and routing was completed for a XC4044XL FPGA 
device. 

The adder and the subtractor modules use only 28% and 29% of 
an FPGA device, respectively. This means that three adder or 
subtractor modules can fit into one FPGA device. On the other 
hand, since the adder and subtractor cores require only 20% of the 
device, five cores can fit into one FPGA device. Since the board 
that we are using has 5 FPGA devices on it, a total of 25 adder or 
subtractor cores can be utilized on the board. The complete 
multiplier module requires around 60% of an FPGA device, and 
the multiply and accumulate module requires 79% of and FPGA 
device. Only one multiplier module or multiply and accumulate 
module can fit into one FPGA. Therefore, a total of five 
multipliers or multiply and accumulate modules can be utilized on 
the board simultaneously.  

Table 1: Device utilization and maximum clock speeds. 

Module Name CLB  
Util. 

%  
Util. 

Clk. Speed 
(MHz) 

Adder (One Input Vector) 463 28 29.53 
Adder (Two Input Vectors) 473 29 30.44 
Subtractor (One Input Vector) 464 29 30.08 
Subtractor (Two Input Vectors) 476 29 30.64 
Multiplier (One Input Vector) 953 59 28.47 
Multiplier (Two Input Vectors) 984 61 27.23 
Accumulator 432 27 31.43 
Product Module 944 59 26.44 
Multiply and Accumulate Module 1265 79 25.35 



Table 2: Comparison of module execution time with software implementations. 

Implementation Type 

Operation Type Software 
C++ 

Software 
Optimized 

C++ 

Hardware 
(1 Module) 

Hardware 
(2 Modules) 

Hardware 
(5 Modules) 

Speed-up 
(5 modules vs 

optimized  
software) 

One Input Vector Addition 14.48 8.54 10.80 5.40 2.16 3.95 
One Input Vector Subtraction 14.29 7.95 10.80 5.40 2.16 3.68 
One Input Vector Multiplication 14.28 7.97 10.80 5.40 2.16 3.69 
Two Input Vector Addition 12.67 9.79 10.80 5.40 2.16 4.53 
Two Input Vector Subtraction 12.24 9.64 10.80 5.40 2.16 4.46 
Two Input Vector Multiplication 12.33 9.52 10.80 5.40 2.16 4.41 
Accumulation 7.54 4.89 2.704 1.36 0.54 9.05 
Product 7.71 6.21 2.704 1.36 0.54 11.05 
Multiply and Accumulate 11.24 8.20 5.432 2.71 1.08 7.59 

 

3.2 GPP Versus RC Modules 
The clock frequencies shown in Table 1 are the values indicated 
by the design tools. Modules were tested at these speeds and they 
behaved as expected. However, we over-clocked the modules to 
50 MHz, the maximum clock speed supported by the FPGA 
board. Surprisingly, all the modules worked properly at 50 MHz. 

Table 2 shows the execution times of the modules, along with the 
regular C++ implementations running on a Pentium II 300 MHz 
processor based PC. In these experiments, the modules were 
clocked at 50 MHz. The length of each input vector was 131,000 
requiring 232,000 words of memory for storage. Hence, a total of 
261,999 floating-point operations were performed by the multiply 
and accumulate module and 131,000 floating point operations 
were performed by the other modules. Since all the modules have 
exactly the same latency, the execution time is identical for similar 
types of modules. When only one addition, subtraction or 
multiplication module utilized, the module runs faster than the 
regular software implementation but slower than the optimized 
software implementation. As the number of modules used 
increases, the execution time of the modules decreases. When five 
modules are utilized, the modules perform the same number of 
floating-point operations around four times faster than a Pentium 
II 300 MHz processor. When five accumulator or product 
modules are utilized, they run 9 and 11 times faster than the 
optimized software implementations. The accumulator module 
gains more speedup than the other modules because of 100 % 
core utilization. 

4. EXAMPLE APPLICATION: MATRIX 
MULTIPLICATION USING MODULES 
In this study, we also wanted to implement an example 
application, matrix multiplication, to demonstrate how to use 
modules to solve larger problems. Matrix multiplication was 
selected because of its scalability and highly parallel nature [11]. 
For simplicity we used square matrices. Two input matrices were 
divided into two equal parts. The first matrix was divided 
horizontally and the other was divided vertically. Combinations of 
the halves were assigned to four PEs as shown in figure 6. Each 
PE was responsible for calculating one quarter of the resulting 
matrix. The PEs’ memory was divided into three sections, 
instruction, input data and the result data memories. Since each 

PE has 1 MB of memory the largest square matrices that we can 
multiply is 340 x 340.  
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Figure 6: Matrix multiplication using modules. 

The matrix multiplication process was implemented in one 
session. During the session, the input matrix data and the module 
instructions were stored in the memory units. After that, the PEs 
were configured with multiplication modules and were started by 
releasing the reset signal.  The host computer waited for the 
interrupt signals from PEs. When the host computer received 
interrupt signals from all four PEs, the session was completed and 
all elements of the resulting matrix were calculated and stored in 
each PEs’ memory. After the session was completed, the host 
computer read the results from the PEs’ memories and printed it. 
Since many addresses involved in this matrix multiplication, it is 
almost impossible to manually generate all module instructions 
correctly. For that reason, we developed a small tool to generate 
instructions for the modules.  We also implemented a host 
program to manage all data and instruction transfers between the 
host computer and the PEs and to manipulate the modules. 

4.1 Results of Matrix Multiplication. 
Due to the memory limitations of the RC system we use, the 
maximum matrix size that we can multiply using the modules is 
340 x 340. To test the matrix multiplication, using the tool, we 
generated module instructions for 200 x 200 and 340 x 340 
matrices. With the help of the host program, matrix 
multiplications were performed on a RC system available in our 
laboratory [10]. Table 3 shows the software and module execution 
times in millisecond. 



Table 3: Comparison of software and module matrix multiplier execution times. 

Implementation Type 

Matrix Size Regular 
Software 

(C++) 

Optimized 
Software1 

(C++) 

Optimized 
Software2 

(C++) 

Hardware 
(Modules) 

Speed-up 
comparing 
to Regular  
Software 

Speed-up 
comparing 

to Optimized 
Software2 

200 x 200 1046.58 814.27 590.32 71.44 14.65 8.26 
340 x 340 9076.06 6585.69 4188.10 411.04 22.08 10.19 

 
In these experiments, the software version was running on a 300 
MHz Pentium II based PC and the modules were clocked at 50 
MHz. The results showed that, excluding the configuration time, 
modules performed the matrix multiplication 2 to 3 times faster 
than the regular software implementation and 0.64 to 1.98 times 
faster than the optimized software version. The optimized 
software version runs extremely fast when the matrix size is small 
because the host computer takes advantage of its cache memory. 
For small matrices, it is able to hold the entire input and output 
matrices in the cache memory. From the table one can conclude 
that as the size of the matrices increase, it is possible to obtain 
significant speedup using the modules. This result implies that the 
larger the matrix sizes, the better the modules will run. One 
disadvantage of this modular matrix multiplier is that the 
configuration time, which is approximately 130 milliseconds, 
should be alleviated. To remove the configuration time overhead, 
a future version of matrix multiplication can be completed in a 
single session using a multiply-accumulate module (MAM). 

5. CONCLUSIONS 
In this study, we implemented several FP modules in VHDL to 
perform IEEE floating-point operations, and mapped them to a 
XC4044XL FPGA device to create a FP module library. The 
modules are designed to be utilized by RC compilation tools to 
automate the design process of RC applications and to reduce the 
design and implementation time, while maintaining enhanced 
performance. The results indicate that floating-point modules can 
achieve speedups of a factor of 5 to 14 over a typical desktop 
computer when the modules are utilized in parallel. Using these 
modules, an example application, FP matrix multiplication, is also 
presented. Our results and experiences demonstrated that with 
these modules, application development time is reduced 
significantly and 8-10X speedup over general-purpose processors 
can be achieved. Results of this study will be used in the 
development of future design automation tools with the goal of 
facilitating RC system development while maintaining enhanced 
performance. 
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